i-vector Based Speaker Recognition on Short Utterances

نویسندگان

  • Ahilan Kanagasundaram
  • Robbie Vogt
  • David Dean
  • Sridha Sridharan
  • Michael Mason
چکیده

Robust speaker verification on short utterances remains a key consideration when deploying automatic speaker recognition, as many real world applications often have access to only limited duration speech data. This paper explores how the recent technologies focused around total variability modeling behave when training and testing utterance lengths are reduced. Results are presented which provide a comparison of Joint Factor Analysis (JFA) and i-vector based systems including various compensation techniques; Within-Class Covariance Normalization (WCCN), LDA, Scatter Difference Nuisance Attribute Projection (SDNAP) and Gaussian Probabilistic Linear Discriminant Analysis (GPLDA). Speaker verification performance for utterances with as little as 2 sec of data taken from the NIST Speaker Recognition Evaluations are presented to provide a clearer picture of the current performance characteristics of these techniques in short utterance conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising autoencoder-based speaker feature restoration for utterances of short duration

This paper describes a speaker feature restoration method for improving text-independent speaker recognition with short utterances. The method employs a denoising autoencoder (DAE) to compensate speaker features of a short utterance which contains limited phonetic information. It first estimates phonetic distribution in the utterance as posteriors based on speech models and then transforms an i...

متن کامل

I-Vector/PLDA Variants for Text-Dependent Speaker Recognition

The i-vector/PLDA approach currently dominates the field of text-independent speaker recognition and the question of how to translate this methodology to the text-dependent domain has recently become an active area of research. The essential difference between the two fields is that it is possible to do speaker recognition with enrollment and test utterances of very short duration in the text-d...

متن کامل

CNN-Based Joint Mapping of Short and Long Utterance i-Vectors for Speaker Verification Using Short Utterances

Text-independent speaker recognition using short utterances is a highly challenging task due to the large variation and content mismatch between short utterances. I-vector and probabilistic linear discriminant analysis (PLDA) based systems have become the standard in speaker verification applications, but they are less effective with short utterances. To address this issue, we propose a novel m...

متن کامل

End-to-end DNN Based Speaker Recognition Inspired by i-vector and PLDA

Recently several end-to-end speaker verification systems based on deep neural networks (DNNs) have been proposed. These systems have been proven to be competitive for text-dependent tasks as well as for text-independent tasks with short utterances. However, for text-independent tasks with longer utterances, end-to-end systems are still outperformed by standard i-vector + PLDA systems. In this w...

متن کامل

Accounting for uncertainty of i-vectors in speaker recognition using uncertainty propagation and modified imputation

One of the biggest challenges in speaker recognition is incomplete observations in test phase caused by availability of only short duration utterances. The problem with short utterances is that speaker recognition needs to be handled by having information from only limited amount of acoustic classes. By considering limited observations from a test speaker, the resulting i-vector as a representa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011